Graphical Time Warping for Joint Alignment of Multiple Curves
نویسندگان
چکیده
Dynamic time warping (DTW) is a fundamental technique in time series analysis for comparing one curve to another using a flexible time-warping function. However, it was designed to compare a single pair of curves. In many applications, such as in metabolomics and image series analysis, alignment is simultaneously needed for multiple pairs. Because the underlying warping functions are often related, independent application of DTW to each pair is a sub-optimal solution. Yet, it is largely unknown how to efficiently conduct a joint alignment with all warping functions simultaneously considered, since any given warping function is constrained by the others and dynamic programming cannot be applied. In this paper, we show that the joint alignment problem can be transformed into a network flow problem and thus can be exactly and efficiently solved by the max flow algorithm, with a guarantee of global optimality. We name the proposed approach graphical time warping (GTW), emphasizing the graphical nature of the solution and that the dependency structure of the warping functions can be represented by a graph. Modifications of DTW, such as windowing and weighting, are readily derivable within GTW. We also discuss optimal tuning of parameters and hyperparameters in GTW. We illustrate the power of GTW using both synthetic data and a real case study of an astrocyte calcium movie.
منابع مشابه
Multiple Multidimensional Sequence Alignment Using Generalized Dynamic Time Warping
Nowadays, the alignment of multidimensional sequences is required in many applications especially for multimedia data. The ordinary DTW is not well satisfied this condition because it can only align a pair of 1D sequences at once. Applying traditional DTW to these tasks not only makes each pairwise alignments are independent but also causes each dimensions are compared separately. In this paper...
متن کاملSelf modeling with flexible, random time transformations.
Methods for modeling sets of complex curves where the curves must be aligned in time (or in another continuous predictor) fall into the general class of functional data analysis and include self-modeling regression and time-warping procedures. Self-modeling regression (SEMOR), also known as a shape invariant model (SIM), assumes the curves have a common shape, modeled nonparametrically, and cur...
متن کاملSelf-Similarity Based Time Warping
In this work, we explore the problem of aligning two time-ordered point clouds which are spatially transformed and re-parameterized versions of each other. This has a diverse array of applications such as cross modal time series synchronization (e.g. MOCAP to video) and alignment of discretized curves in images. Most other works that address this problem attempt to jointly uncover a spatial ali...
متن کاملContinuous Dynamic Time Warping for Translation-Invariant Curve Alignment with Applications to Signature Verification
The problem of establishing correspondence and measuring the similarity of a pair of planar curves arises in many applications in computer vision and pattern recognition. This paper presents a new method for comparing planar curves and for performing matching at sub-sampling resolution. The analysis of the algorithm as well as its structural properties are described. The performance of the new ...
متن کاملAn Application of the ABS LX Algorithm to Multiple Sequence Alignment
We present an application of ABS algorithms for multiple sequence alignment (MSA). The Markov decision process (MDP) based model leads to a linear programming problem (LPP), whose solution is linked to a suggested alignment. The important features of our work include the facility of alignment of multiple sequences simultaneously and no limit for the length of the sequences. Our goal here is to ...
متن کامل